249 research outputs found

    Spatial distribution maps for benthic communities

    Get PDF

    Effects of green manure storage and incorporation methods on greenhouse gas fluxes and N mineralization after soil application

    Get PDF
    Organic arable farming faces challenges with low crop yields, partly due to inefficient use of green manure-derived nitrogen (N). Under current farming practices, green manure leys are often cut and mulched during the growing season with the associated risk of environmental N losses, leading to eutrophication and global warming. In this 3-month incubation experiment, we tested a new green manure management strategy as part of the ICROFS project HighCrop. With the new strategy, green manure leys are instead harvested and preserved until the following spring either as compost mixed with straw (grass-clover:straw, 4:1, w:w) or as silage of harvested ley biomass. In spring, these two green manure materials can then be used for targeted fertilization of spring sown crops. The objectives of the study were to: • Assess how storage methods (compost vs. silage) affect N2O fluxes and soil respiratory CO2 emissions after soil application of preserved grass-clover green manure. • Determine whether the greenhouse gas fluxes are influenced by the incorporation method, more specifically harrowing (simulated by mixing the material into the top 5 cm soil layer) and ploughing (the material placed at 15 cm depth). • Compare composted and ensiled green manures concerning their abilities to provide plant-available N during a 3-month period. During the experiment, gas fluxes were measured at nine occasion followed by eight destructive soil harvests. In total, the study included 192 soil units that were incubated at 15 °C in darkness. Each unit consisted of a packed soil core (26 cm high × 10 cm diameter) with bulk density of 1.07 g cm-3 and gravimetric soil moisture of 20 %. The addition of compost and silage corresponded to a fertilization rate of 120 kg total N ha-1. A mineral fertilizer treatment was included as a reference and received 80 kg NH4-N ha-1. Compared to the more degraded compost, the silage material had a high content of labile compound. In addition, incorporation of green manure by harrowing was expected to improve soil microbes’ access to the materials, and thereby increase the decomposition rate. In line with this, cumulative CO2 emissions from the green manure treatments was lowest for compost incorporated by ploughing and highest for silage incorporated by harrowing. Between 32 and 54 % of the added green manure carbon was respired as CO2 during the 3-month experiment. Interestingly, mineral fertilizer suppressed soil respiratory CO2 emission. Generally, N2O emissions were higher from the silage-amended soils than from soils fertilized with compost. Especially, silage incorporated by ploughing gave rise to increased N2O effluxes, corresponding to 0.3 % of applied total N during the 3-month period. This could partly result from denitrification of initial soil nitrate, stimulated by high local oxygen consumption in the labile silage layer. In contrast, compost incorporated by harrowing caused a downwards N2O flux into the soil, presumably an effect of lacking mineral N availability in this treatment. Overall, our study showed that emissions of N2O can be reduced by incorporating green manure using harrowing instead of ploughing. Net mineralization of green manure-derived N was absent until more than three weeks after incorporation of the materials. Over the 3-month experiment, grass-clover silage provided the highest net release of inorganic N with preliminary results corresponding to 38-43 kg N ha-1, irrespective of the incorporation method used. In contrast, no increase in soil mineral N was observed for the composted grass-clover and straw mixture compared to the unfertilized control soil. In fact, soil incorporation of compost by harrowing caused immobilization of soil mineral nitrogen 1-2 months after experimental set-up

    Kløvergræs ensilage og kompost som grøngødning

    Get PDF
    En ny strategi kan måske forbedre udnyttelsen af det kvælstof, som fikseres af kløverplanter i økologisk planteavl. Vores studie viste en større frigivelse af kvælstof fra ensileret kløvergræs end fra kompost af kløvergræs iblandet halm. Samtidig fandt vi, at indarbejdning af grøngødning ved harvning frem for pløjning reducerede udledningen af den stærke drivhusgas, lattergas

    Nitrogen mineralization and greenhouse gas emissions after soil incorporation of ensiled and composted grass-clover as green manure

    Get PDF
    This 3-month incubation study showed that ensiled grass-clover was a better nitrogen (N) source than a composted grass-clover and straw mix (grass-clover:straw, 4:1, w:w), owing to the high content of labile compounds compared to the more degraded compost. Our study also indicated that emissions of the strong greenhouse gas nitrous oxide (N2O) can be reduced by incorporating green manure using harrowing instead of ploughing. The silage-derived N release by the end of the incubation was equivalent to 38-42 kg N ha-1, which corresponded to one third of the N applied in silage, with no difference between ploughing and harrowing. In contrast, no net release of mineral N was detected from the composted grass-clover

    Great Belt:foundation of the West Bridge

    Get PDF

    Efficient wave function matching approach for quantum transport calculations

    Get PDF
    The Wave Function Matching (WFM) technique has recently been developed for the calculation of electronic transport in quantum two-probe systems. In terms of efficiency it is comparable with the widely used Green's function approach. The WFM formalism presented so far requires the evaluation of all the propagating and evanescent bulk modes of the left and right electrodes in order to obtain the correct coupling between device and electrode regions. In this paper we will describe a modified WFM approach that allows for the exclusion of the vast majority of the evanescent modes in all parts of the calculation. This approach makes it feasible to apply iterative techniques to efficiently determine the few required bulk modes, which allows for a significant reduction of the computational expense of the WFM method. We illustrate the efficiency of the method on a carbon nanotube field-effect-transistor (FET) device displaying band-to-band tunneling and modeled within the semi-empirical Extended H\"uckel theory (EHT) framework.Comment: Submitted to Phys. Rev.
    • …
    corecore